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Summary

� Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon

(C) cycling. However, plants and soil organisms are usually studied separately, leading to a

knowledge gap regarding their coordinated contributions to ecosystem C cycling.
� We explored whether integrated consideration of plant and nematode traits better

explained soil organic C (SOC) dynamics than plant or nematode traits considered separately.

Our study system was a space-for-time natural restoration chronosequence following agricul-

tural abandonment in a subtropical region, with pioneer, early, mid and climax stages.
� We identified an integrated fast–slow trait spectrum encompassing plants and nematodes,

demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in

the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and

nematode traits explained more variation in SOC than by either group alone. Structural equa-

tion modeling revealed that the integrated fast–slow trait spectrum influenced SOC through

its regulation of microbial traits, including microbial C use efficiency and microbial biomass.
� Our findings confirm the pivotal role of plant-nematode trait coordination in modulating

ecosystem C cycling and highlight the value of incorporating belowground traits into biogeo-

chemical cycling under global change scenarios.

Introduction

Many ecosystems world-wide face exposure to ongoing climate
change and human activities, resulting in catastrophic losses of
carbon (C) and altered provisioning of critical ecosystem services
(Vitousek et al., 1997; Adla et al., 2022). In this context, improv-
ing soil C content to recover multiple ecosystem services has
become one of the central and longest-standing themes in ecol-
ogy (Lal, 2015; Singh, 2018; Kopittke et al., 2022). Soil organic
C storage represents the largest terrestrial C pool and is derived
from total C inputs to soils, including primary productivity, root
exudates and organic matter ranging from living organisms to
decomposing plant materials (Amundson, 2001; Jackson
et al., 2017). Natural restoration on abandoned land represents
one of the most used restoration strategies implemented
world-wide (Knops & Tilman, 2000; Morri€en et al., 2017),
with the capacity not only to support biodiversity conservation
but also to rebuild above- and belowground C pools

(Silver et al., 2004; Hobbs & Cramer, 2008; Clewell & Aronson,
2013; Wu et al., 2021; Fu et al., 2023). However, the restoration
of natural and well-functioning ecosystems is a long-term process
(McLauchlan et al., 2006; Lu et al., 2018), dependent upon the
interactions among different components of the community
(Wardle et al., 2004; Trivedi et al., 2022).

Many restoration projects have aimed at increasing C pools
using a taxonomic-centric perspective, for example based on
community diversity or the abundance of target species (Yang
et al., 2019; Hua et al., 2022; Tian & Zhang, 2023). However,
there is evidence that achieving a target community composition
and restoring self-sustaining populations of native species
through restoration efforts can be a protracted process and may
never be achieved (Lockwood & Pimm, 1999), owing to environ-
mental filtering and biotic interactions under novel conditions.
For example, restoring a target grassland community to its
original species composition is almost impossible as global
climate extremes continually induce shifts in the complex
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plant–soil-biotic interactions (Matthews & Spyreas, 2010; Wood-
cock et al., 2011; Perring et al., 2015). Thus, the restoration of nat-
ural ecosystem functioning and properties requires complementary,
theory-based frameworks, rather than solely focusing on reinstating
functional groups that may fail to survive in a complex world
(Seastedt et al., 2008; Laughlin, 2014). Increasing emphasis has
been placed on embracing a trait-based approach in restoration
(Balachowski & Volaire, 2018; Carlucci et al., 2020; Auclerc
et al., 2022; Coutinho et al., 2023; Wong et al., 2024), as the biolo-
gical contribution to C cycling is more of a multivariate continuum
than a situation where species are categorized into discrete groups
(Funk et al., 2017; Sobral et al., 2023). However, there are still
many uncertainties about how the coordination between above-
ground and belowground organisms contribute to the sustainable
enhancement of C dynamics.

Ecological strategy frameworks (Southwood, 1977; Westoby
et al., 2002; Reich et al., 2003; Laughlin, 2023), for
example those invoking ideas of resource ‘economics’
(Bloom et al., 1985), provide a conceptual context for ground-
ing trait-informed restoration (Laughlin, 2014; Carlucci et al.,
2020). Researchers increasingly recognize a plant economics
spectrum (PES) which, incorporating ideas of trade-offs
between growth and survival, underlies a spectrum of strategies
ranging from ‘fast’ to ‘slow’ (Wright et al., 2004; Reich, 2014;
Bergmann et al., 2020). Furthermore, the amount and compo-
sition of C that plants contribute to the soil is related to their
traits and ecological strategies (De Deyn et al., 2008; Sobral
et al., 2023). In ecosystems undergoing natural restoration,
there is a shift in plant ecological strategies from fast to slow
(Maharning et al., 2009). The fast–slow spectrum of trait varia-
tion influences C dynamics: plant species at the fast end of the
PES tend to allocate most of their C to resource acquisition
and use structures with low-density and high-nutrient concen-
trations, leading to rapid growth and litter decomposition,
which contribute to fast C fluxes and small C pools. By con-
trast, slow-growing and long-lived species produce low-quality
plant materials that retard decomposition and thereby poten-
tially increase soil C pools (De Deyn et al., 2008; Faucon
et al., 2017; Ding et al., 2021; Da et al., 2023). However, the
set of most commonly used plant traits alone are poor predic-
tors of C cycling (van der Plas et al., 2020). Furthermore, dur-
ing the course of natural restoration, nutrients will become
‘locked-up’ within soil organisms, with consequences for the
accumulation of soil organic matter (Odum, 1969). Below-
ground soil organisms, being extremely abundant and diverse,
are major players in aboveground community dynamics and
ecosystem C cycling (Briones, 2018; Griffiths et al., 2021;
Guerra et al., 2021; Topalovi�c & Geisen, 2023), thus holding
the potential to utilize soil organism traits to improve our
mechanistic understanding of SOC dynamics (Gebremikael
et al., 2016; Malik et al., 2020). Consequently, restoration prac-
titioners should integrate the ecological strategies and traits of
plants and soil organisms to comprehensively understand C
dynamics as natural restoration progresses, thereby providing a
valuable tool to enhance the monitoring and assessment of
restoration trajectories.

To facilitate a more accurate prediction of C cycling, we
recently proposed a new framework that combines the traits and
ecological strategies of plants with those of nematodes (Zhang
et al., 2024). Nematodes, possessing a diverse array of traits, are
the most abundant and functionally diverse animals on Earth,
participating in biogeochemical cycling and making them prime
candidates to advance trait-based approaches belowground (Bon-
gers & Ferris, 1999; Bardgett & van der Putten, 2014; van den
Hoogen et al., 2019). Trade-offs between nematode traits have
been proposed to explain their ecological strategies, encompass-
ing a spectrum from fast-growing, higher-metabolism nematodes
to slow-growing, but larger-bodied nematodes, described as the
nematode economics spectrum (NES), parallel to the PES
(Zhang et al., 2024). Hence, bridging plants and nematodes
across the fast–slow spectrum – PES–NES coordination – would
provide an emergent perspective for enhancing the predictive
power of SOC dynamics, compared to focusing solely on plant
traits. Additionally, soil microbial traits of the belowground
world, such as microbial C use efficiency (CUE; the ratio of C
substrate retained in biomass to that respired) and microbial bio-
mass, determine the C dynamics in soils (Sinsabaugh et al., 2013;
Geyer et al., 2016; Tao et al., 2023). Moreover, it is evident that
variation in plant and nematode traits primarily affect microbial
traits, thus shaping C cycling (Morri€en et al., 2017; Kardol & De
Long, 2018; Nielsen, 2019; Schmitz & Leroux, 2020). For exam-
ple, plants impact microbial biomass by altering the quantity
and quality of resources entering the soil in the form of litter and
root exudates, which are linked to SOC dynamics (Grigulis
et al., 2013; Borden et al., 2021; Wan et al., 2022). Similarly,
nematode abundance shapes microbial activities responsible for
the utilization of organic matter, thereby influencing C minerali-
zation (Trap et al., 2016; Kane et al., 2023). Therefore, establish-
ing the connections among PES–NES coordination, microbial
traits and SOC dynamics would aid in monitoring and assessing
C cycling during natural restoration (Kardol & Wardle, 2010),
yet empirical evidence is still lacking.

The objectives of this study were to identify coordinated rela-
tionships between the fast–slow trait spectra of plants and nema-
todes; and, to evaluate whether and how this coordination is
associated with SOC dynamics during the development of
restored ecosystems. We sought to examine whether knowledge
of these relationships could serve as a valuable tool for monitor-
ing and assessing restoration trajectories within a highly diverse
subtropical community, thus contributing to nature-based solu-
tions (NbS) for restoration. Biodiversity-rich subtropical forests
are a strong C sink, potentially contributing greatly to global C
sequestration (Yu et al., 2014; Zhang et al., 2016). To achieve
these aims, we synthesized evidence from a chronosequence span-
ning pioneer, early, mid, and climax stages of natural restoration
on ex-arable lands that represent over 60 yr of restoration efforts.
We determined plant, nematode and microbial traits and ana-
lyzed their linkages with SOC dynamics, aiming to inform
trait-based assessment of restoration trajectories by integrating
both above- and belowground traits. We then tested the follow-
ing hypotheses: (1) plant and nematode traits would vary in a
coordinated way. Plants and nematodes at the pioneer stage
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would exhibit more evident ‘fast’ strategies, whereas those at the
climax stage would display more evident ‘slow’ strategies
(Fig. 1a). (2) Joint consideration of plant and nematode traits –
an integrated fast–slow plant and nematode trait spectrum –
would explain more variation in SOC than the spectrum of either
of the two groups alone. In addition, the integrated trait spec-
trum would predict SOC dynamics by mediating microbial
traits, where plants and nematodes at the slow end of the spec-
trum correspond to high CUE and microbial biomass, as well as
high-SOC contents, whereas those at the fast end of the spectrum
would support lower CUE and microbial biomass, resulting in
lower SOC contents (Fig. 1b).

Materials and Methods

Study site

The study site is located in the Daweishan National Natural
Reserve (22°350–23°070N, 103°200–104°030E), Yunnan Pro-
vince, China. This region features a subtropical monsoon climate

with a mean annual temperature of 22.6°C and a mean annual
precipitation between 1700 and 1900 mm. The soils are derived
from a limestone base classified as Calcaric Cambisols according
to the FAO system (IUSS Working Group WRB, 2015). This
area encompasses the majority of the rainforest habitat in the
southeastern region. Notably, vegetation maps and documents
provided by the local forestry department and the State Forestry
Administration of China indicated that ecosystem degradation in
this region has been exacerbated by agricultural expansion, exces-
sive tillage, and ongoing cultivation. To effectively prevent
further degradation, restoration projects have been initiated to
abandon disturbed land and restore biodiversity along with asso-
ciated ecosystem services. Here, we adopted the space-for-time
substitution method (Walker et al., 2010; Lovell et al., 2023) to
investigate natural restoration patterns using a chronosequence
consisting of pioneer, early, mid, and climax stages (Supporting
Information Fig. S1). The fields, historically used for decades to
cultivate corn, were abandoned at various points in time. Follow-
ing abandonment, the fields had been undergoing 5–60 yr of
natural restoration with the aid of active management practices
such as controlling competitive vegetation, thinning stands, and
providing supplemental irrigation to assist recovery. The pioneer
stage, characterized by herbaceous plant communities, has been
restored for 5 yr since its abandonment. Subsequently, the early
and mid-stages were dominated by trees with limited diversity
and biomass, which had undergone recovery for 15 and 30 yr,
respectively. Finally, the climax stage exhibited high diversity and
biomass, achieved through over 60 yr of restoration.

Field sampling

The field survey was conducted in August 2020. Four experimen-
tal plots were designated for each stage, selected with elevations
ranging from 1600 to 1683 m to mitigate climatic and topo-
graphic variations. In forests (early, mid, and climax stages), we
established 30 m 9 40 m plots and recorded the height and dia-
meter at breast height (DBH) of each tree taller than 1.5 m. To
avoid neighboring effects and spatial autocorrelation, the hori-
zontal interval between any two plots was maintained at 50 m.
In grasslands (pioneer stage), 1 m 9 1 m plots were designated,
with a 20 m horizontal interval between each plot, to measure
species coverage, number, average height, and maximum height.
The information reflecting the conditions at various stages of
restoration is presented in Table S1. In each plot, importance
values were calculated to confirm the dominant species based on
three descriptors of abundance: frequency, quantity (number of
individuals) and coverage (Avolio et al., 2019). The dominant
plant species in each plot were selected as target species for sam-
pling. A total of 105 species from 49 families were collected
across four restoration stages, representing 41 species in grassland
(pioneer stage) and 64 species in forests (33 species in the early
stage, 30 species in the mid-stage, and 40 species in the climax
stage) (Table S2). Soil samples were collected from the 0–15 cm
layers using a 5-cm diameter auger at 20–30 random points in
each forest plot and at five points in each grassland plot. These
samples were then mixed to get one composite sample per plot.

Pioneer Early Mid Climax

Natural restoration(a)

(b)

Nematodes
Fast Slow

Microbes
Fast Slow

Fast–slow strategies

Soil organic carbon HighLow

Plants
Fast Slow

Plant-nematode coordination

(1)

(2) (3)

(4) (4)

NESPES

Fig. 1 (a) A conceptual diagram illustrating restoration trajectories in plant
and soil nematode assemblages shows that ecological strategies of plants
and nematodes progress from the pioneer stage characterized by fast
strategies to the climax stage with slower strategies. The belowground
icons represent nematodes, with the size of each icon indicating variations
in body size. (b) The a priorimodels of expected linkages between plant-
nematode coordination and soil organic carbon (SOC). Plant and
nematode traits exhibit coordinated variation across the fast–slow
economics spectrum (1) (Wardle et al., 2004; Zhang et al., 2024). The
integrated fast–slow plant and nematode economics spectra indirectly
affect SOC dynamics (2–4) by shaping microbial traits (Wan et al., 2022;
Kane et al., 2023) and directly drive SOC dynamics (4) (Sobral
et al., 2023; Zhang et al., 2024). Mid, middle; NES, nematode economics
spectrum; PES, plant economics spectrum.
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Functional trait analysis

Plant traits We focused on nine plant traits reflecting the PES
(Wright et al., 2004; Reich, 2014; Bergmann et al., 2020). We
randomly selected five to ten individuals per woody species and
15 to 20 individuals per herbaceous species within the experi-
mental plots to measure these traits. Plant leaf and root samples
were collected following the standardized protocols by Cornelis-
sen et al. (2003) and Freschet et al. (2021). For each species,
20–50 fully expanded and undamaged leaves were selected. These
samples were then placed in labeled bags. Leaves were scanned
using a scanner (EPSON V19; Epson, Suwa, Japan) to estimate
leaf area, then oven-dried at 70°C for a minimum of 72 h and
weighed to determine leaf dry weight. Leaf mass per area (LMA,
g m�2) was calculated as the ratio of leaf dry weight to leaf area.
Leaf N concentration (Nleaf, %) were gathered using the Sercon
Integra 2 elemental analyzer (Sercon Ltd., Crewe, UK). Leaf lig-
nin concentration (Ligninleaf, %) were measured using the Van
Soest method (Van Soest & Wine, 1967). Root samples were
obtained from each woody plant by tracing roots from the plant
basal stem, while root systems of 30–50 well-developed indivi-
duals were carefully dug out for each herbaceous plant. All root
samples were transported to the laboratory within a few hours for
further processing. In the laboratory, the root samples were care-
fully washed to remove adhering soil particles, scanned to images
using an EPSON LA2400 scanner (Epson), and then oven-dried
at 70°C for at least 72 h to determine root dry weight. Subse-
quently, root images were analyzed using WINRHIZO 2004a soft-
ware (Regent Instruments, Quebec, QC, Canada) to obtain root
length, volume, area, and diameter (RD, mm). Specific
root length (SRL, m g�1) was the ratio of the total root length
and root dry weight, and specific root area (SRA, cm2 g�1) was
the total root area per unit root dry weight. Root C (Croot, %)
and N concentration (Nroot, %), as well as P concentration (Proot,
%), were determined using the Sercon Integra 2 elemental analy-
zer (Sercon Ltd.) and inductively coupled plasma spectroscopy
(ICP-OES, Agilent 710; Agilent Technologies, Palo Alto, CA,
USA), respectively.

Nematode traits From the composite soil sample collected at
each site, nematodes were extracted from 100 g of fresh soil using
a sequential extraction procedure (Liu et al., 2008). Nematode
counting was conducted utilizing a stereomicroscope (SMZ-168;
Motic, Xiamen, China), with the first 200 nematodes in each
sample identified to the genus level under a light microscope
(magnification range: 400–10009; Olympus BX50, Tokyo,
Japan) according to Bongers (1988) and Yin (1998). If the sam-
ple contained < 200 nematodes, all nematodes were identified.
For trait measurements, we selected 10–30 individuals from each
genus and focused on traits that reflect the NES (Zhang
et al., 2024), including length (lm), diameter (lm), and specific
nematode biomass (SNB, lg per ind). Body length (distance
from mouth to tail) and diameter (widest part of the body) were
measured with the image processing software MOTIC IMAGES PLUS
3.0. Biomass (lg) was estimated using the Andrassy formula
(length 9 diameter2 9 1.6 9 10�6) (Ferris, 2010a,b). SNB

(biomass per individual) was calculated as the ratio of total bio-
mass of each nematode genus to its abundance.

Soil microbial traits Soil microbial CUE was determined using
the 18O-H2O tracer method (Spohn et al., 2016). Initially, 8 g of
fresh soil was placed in a respiration bottle, sealed with plastic wrap,
and incubated for 7 d. Moisture content was monitored and
adjusted to maintain consistency with natural field conditions. Sub-
sequently, two replicates, each comprising 0.5 g of cultured soil,
were preincubated in 2 ml vials. One replicate was enriched with
18O-H2O to reach 20% 18O enrichment, while the other received
the same volume of 16O-H2O. All soil samples were then trans-
ferred into 20 ml incubation containers and incubated for 24 h.
Additionally, three soil-free bottles serve as controls for CO2 deter-
mination. After the 24-h incubation period, 10 ml gas samples were
collected with a syringe, and the CO2 concentration was analyzed
using a gas chromatography (Agilent 7890A; Agilent Technologies).
The vials were subsequently closed, frozen using a lyophilizer, and
stored at �80°C until DNA extraction. DNA extraction was per-
formed using a DNA extraction kit (DNeasy PowerSoil Pro Kit)
following the manufacturer’s instructions, with DNA concentration
quantified using a NanoDrop ND-1000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Furthermore, the 18O
abundance was assessed using a MAT253 isotope-ratio mass spec-
trometer coupled with an elemental analyzer (FLASH 2000;
Thermo Fisher Scientific, Waltham, MA, USA). CUE was calcu-
lated using equations presented by Zheng et al. (2019).

Microbial biomass was determined using phospholipid fatty
acids (PLFAs) analysis, as described by Frosteg�ard et al. (1991).
Briefly, fatty acids were extracted from 8 g freeze-dried soil sam-
ples with a chloroform/methanol/citrate buffer (1/2/0.8 v/v/v).
Lipid classes and phospholipids were separated by solid-phase
extraction tubes (ANPEL Laboratory Technologies Inc., Shang-
hai, China), and the fatty acid methyl esters were quantified by
gas chromatography (6850; Agilent Technologies). The sum of
i-15 : 0, a-15 : 0, 16 : 0, i-16 : 0, 16:1x7c, cy-17 : 0x7c,
18:1x7c, 16:1x5, 18:1x9c, 18:2x6c, 14 : 0, 16 : 0, 17 : 0,
18 : 0, and 20 : 0 was used to represent microbial biomass (Joer-
gensen, 2022).

Soil organic carbon

Soil organic carbon content was analyzed using the Sercon Inte-
gra 2 elemental analyzer (Sercon Ltd.). Before analysis, the soil
samples were pretreated with 1 M hydrochloric acid to remove
inorganic C (Paul et al., 2006).

Statistical analysis

Data analyses were conducted using R software 4.3.3 (R Core
Team, 2023). First, all plant and nematode traits were
log-transformed to meet standard assumptions of homoscedasti-
city and normality. One-way ANOVA with Fisher’s least signifi-
cant difference (LSD) tests were adopted to assess the variation of
plant traits, nematode traits, microbial traits and SOC contents
among different restoration stages.
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Second, the fast–slow axes of plant and nematode
community-level traits across restoration stages were identified
by performing principal component analyses (PCA) on the
covariance matrix using the VEGAN package (Oksanen
et al., 2019). Generally, plants with ‘fast’ strategies exhibit high
SRL and SRA, and high concentrations of leaf and root N, as
well as root P, while ‘slow’ plants have high LMA, high dia-
meter roots, and concentrations of root C and leaf lignin
(Wright et al., 2004; Reich, 2014). Similarly, ‘fast’ nematodes
tend to have smaller length and width with low SNB, whereas
‘slow’ nematodes display the opposite traits (Zhang
et al., 2024). The community-weighted mean (CWM) values
for plant and nematode traits were calculated as follows: plant
CWM was determined based on the importance values ((rela-
tive frequency + relative quantity + relative coverage)/3)
derived from plant communities, while nematode CWM relied
on relative abundance within their communities. PCAs were
then performed to identify the fast–slow axis at the community
level using CWM trait values for: (1) only plant traits, (2) only
nematode traits, and (3) plant and nematode traits, together.

Third, the scores of the first axis were extracted from the PCAs
because they captured 75.6–96.8% of the variation, making them
suitable proxies for the fast–slow spectra. Furthermore, to evalu-
ate which fast–slow spectrum was the most important and cred-
ible predictors of SOC, we performed a classification random
forest analysis (RFs) employing the rfPermute function within the
RFPERMUTE package. In the RFs, the plant fast–slow trait spec-
trum, the nematode fast–slow trait spectrum, and the integrated
plant and nematode fast–slow trait spectrum were included as
predictors of CUE, microbial biomass, and SOC. The signifi-
cance of each predictor was evaluated through 5000 permutations
of response variables using the rfPermute function. Moreover, we
assessed the significance values of the overall model using the a3
function within the A3 package. Furthermore, we used variation
partitioning analysis and Venn diagrams (Borcard et al., 1992) to
partition the unique and joint contributions of the plant fast–
slow trait spectrum and the nematode fast–slow trait spectrum to
CUE, microbial biomass, and SOC. The analyses were con-
ducted utilizing the varpart function within the VEGAN package.

Finally, structural equation modeling (SEM) using the LAVAAN

package (Rosseel, 2012) was conducted to analyze direct and
indirect effects of the integrated plant and nematode fast–slow
trait spectrum on SOC. In the model, a direct effect is indicated
by a single-headed arrow pointing from the integrated fast–slow
trait spectrum to SOC, whereas the indirect effects of the inte-
grated fast–slow trait spectrum on SOC are mediated by soil
microbial traits (microbial CUE and microbial biomass). Initi-
ally, a priori models were constructed (Fig. 1b). Furthermore, we
used PC1 of the PCA of plant-nematode traits, which explained
78.4% of the total variation, to represent the integrated plant and
nematode fast–slow trait spectrum. The quality of the SEM
model was evaluated using degrees of freedom (df), the
chi-square goodness-of-fit statistic (P > 0.05 indicate statistically
significant model fit), the comparative fit index (CFI), and the
standardized root mean square residual (SRMR), and the root
mean square error of approximation (RMSEA).

Results

Variation of individual-level traits during natural restoration

Most plant and nematode traits differed significantly across the
pioneer, early, mid and climax stages of restoration (P < 0.05,
Fig. 2). Traits linked with a fast strategy at the pioneer stage, such
as high Nleaf, SRL, SRA, Nroot, and Proot (Fig. 2a), displayed
negative loadings on PC1 (Fig. S2a). Conversely, traits associated
with a slow strategy at the climax stage, including high Croot,
RD, Ligninleaf, and LMA for plants (Fig. 2a), as well as high dia-
meter, length, and SNB for nematodes (Fig. 2b), exhibited posi-
tive loadings on PC1 (Fig. S2).

Covariation in community-level plant and nematode traits

Trait variation along the first axis of the PCAs identified the fast–
slow spectra of plants (PC1: 75.6% variance, Fig. 3a), nematodes
(PC1: 96.8% variance, Fig. 3b), and plant and nematode
together (PC1: 78.4% variance, Fig. 3c). Plant communities were
arrayed along an axis representing variation from ‘fast’ to ‘slow’
traits (and thus ecological strategies), with fast communities char-
acterized by species associated with high N, P concentration,
SRL, and SRA, and slow communities comprised of species with
higher C and lignin concentration, as well as larger RD and LMA
(Figs 3a, S3a). This corresponded neatly to stage in the restora-
tion chronosequence. Similarly, there was an axis from Climax
sites with slow nematode communities dominated by larger
length and diameter, as well as higher SNB, to Pioneer sites with
fast communities consisting of smaller-bodied nematodes
with lower SNB (Figs 3b, S3b). Moreover, the covariation of
plants and nematodes showed a slow-fast axis, where distinct trait
syndromes characterized fast to slow communities (Fig. 3c).

Effects of the integrated fast–slow plant and nematode
economics spectrum on microbial traits and SOC

Microbial CUE and biomass generally increased from pioneer to
climax stages, ranging from 0.25 to 0.85 and from 50.4
to 168.4 nmol g�1 soil, respectively (P < 0.05, Fig. 4a,b). Simi-
larly, SOC content generally increased across the pioneer, early,
mid and climax stages, ranging from 39.4 to 118.2 g C kg�1 soil
(P < 0.05, Fig. 4c). Soil physiochemical properties also signifi-
cantly varied across restoration stages (Table S3). Ranking the
importance of the spectra of plants, nematodes, and plant and
nematode together according to the Random Forest models, the
results identified that the integrated economics spectrum was
generally the most important predictors of CUE (r2 = 0.80,
P < 0.001; Fig. 5a), microbial biomass (r2 = 0.73, P < 0.001;
Fig. 5b) and SOC (r2 = 0.72, P < 0.001; Fig. 5c). Variation par-
titioning analysis revealed that the PES and the NES together
accounted for 91%, 87% and 84% of the total variation in CUE,
microbial biomass and SOC, respectively (Fig. 6). The common
patterns of variation in the fast–slow spectra of plants and nema-
todes (the joint effects) explained 88% (Fig. 6a), 83% (Fig. 6b),
and 76% (Fig. 6c) of the total variation.
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SEM demonstrated the initially conceptualized a priori model
was a good fit for our data (degrees of freedom = 1,
P-value = 0.403, SRMR = 0.006, CFI = 1.000, RMSEA
< 0.001; Fig. 7). Specifically, our SEM revealed that the inte-
grated plant and nematode fast–slow trait spectrum directly
and/or indirectly regulated SOC. This spectrum exhibited a
strongly positive association with CUE (covariance coeffi-
cient = 0.96) and microbial biomass (covariance coefficient =
0.34, Fig. 7). By increasing CUE and microbial biomass, the
fast–slow trait spectrum indirectly promoted high-SOC
dynamics (covariance coefficient = 0.57, Fig. 7). In addition to
this indirect regulation of SOC via microbial traits, plant and
nematode fast–slow trait spectrum directly controlled the SOC
dynamics (covariance coefficient = 0.37, Fig. 7).

Discussion

Coordination between plant and nematode traits?

This study is the first empirical attempt to investigate the coordi-
nation between plant and nematode traits, as well as their

connections with microbial traits and SOC dynamics. Specifi-
cally, it highlights the existence of an integrated fast–slow axis
of plants and nematodes, aligning with previously identified fast–
slow trade-offs in the PES and NES (Wright et al., 2004;
Reich, 2014; Zhang et al., 2024). This extends the knowledge of
prior studies that investigated the coordinated responses of nema-
tode trophic groups and ecological indices to plant traits (Die-
trich et al., 2020; Otfinowski & Coffey, 2020; Zhang
et al., 2020, 2022a,b), thereby demonstrating the tight functional
linkages between aboveground and belowground moieties or
attributes of the ecosystem (Wardle et al., 2004; Neyret
et al., 2024).

The observed covariation in plant and nematode traits pro-
vided compelling evidence for synchronous changes in plants and
nematodes during natural restoration (Figs 2, 3), ranging from
small-bodied organisms characterized by fast resource acquisition
and metabolic activities in the pioneer stage to large and
slow-growing organisms in the climax stage, consistent with our
first hypothesis. The theoretical framework of the fast–slow stra-
tegies and traits is well-established in plants (Wright et al., 2004;
Reich, 2014; D�ıaz et al., 2016; Salguero-G�omez et al., 2016),
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and has shown potential linkages with ecosystem C cycling (Rou-
met et al., 2016; De Long et al., 2019; Xu et al., 2021; Ridgeway
et al., 2022). However, such theories are still in their infancy for
soil nematodes, and it is crucial to utilize diverse trait indices to
fully elucidate nematode ecological strategies and to establish
links with C cycling (Du Preez et al., 2022).

Here, we leveraged two functional attributes – abundance and
biomass – to quantify the nematode biomass per individual (spe-
cific nematode biomass, SNB). Our findings revealed significant
relationships among SNB, nematode economic traits, and SOC
(Fig. S4), indicating that nematodes with low SNB favor fast

growth and rapid returns on investment in resource acquisition
and metabolism, while those with high SNB exhibit the contrast-
ing performance. Similarly, SNB emerges as a significant predic-
tor of microbial traits (Fig. S5), implying its potential role in
top-down forces regulating microbial metabolism and produc-
tion. This is likely due to variations in abundance and biomass
reflecting nematode activities and performance and being tightly
linked to plants, microbes, and C cycling (Ritz & Trudgill, 1999;
Ferris, 2010a,b; van den Hoogen et al., 2019). Our finding
allows us to utilize SNB for mirroring nematode growth, repro-
duction, and survival strategies, while also generating insights
into its role as predictors of C cycling. This highlights the need
to develop informative nematode traits that effectively capture
the cost–benefit principles and comprehensively understand C
cycling, which are both theoretically and practically essential for
advancing in belowground trait ecology.

Disentangling trait drivers of SOC dynamics

Consistent with our second hypothesis, joint consideration of
plant and nematode traits, that is the integrated fast–slow trait
spectrum, explained more variation in SOC than considering
either plants or nematodes alone, which emphasizes the potential
value of extending the trait-centric view that spans from plants to
soil organisms to fully understanding C cycling. We provide evi-
dence that the integrated fast–slow trait spectrum is a good pre-
dictor of SOC, and the joint effect of the PES and NES explains
the majority of the total variation in SOC (Figs 5, 6). This is pre-
sumably because of the close linkages between plant and nema-
tode attributes, resulting in a tight alignment between the NES
and PES (Zhang et al., 2024). Consequently, it is reasonable to
expect a higher joint contribution to SOC dynamics from the
PES and NES than their unique contributions. Furthermore,
plant-nematode coordination corresponded to SOC through
steering microbial traits, as indicated in SEM (Fig. 7). Coordina-
tion at the slow end of the fast–slow spectrum is known to be
related to reduced metabolic activities, lower tissue resource
contents, and slower turnover rates (Wardle et al., 2004;
Yvon-Durocher & Allen, 2012; Neyret et al., 2024), cascading to
microbes that allocate more C to biomass formation and less
to respiration, resulting in higher C use efficiency and biomass
(Wan et al., 2021; C. Wang et al., 2021). Subsequently, the com-
bined effects of slow plants, nematodes, and microbes are asso-
ciated with increased SOC contents in the climax stage.
Conversely, coordination characterized by fast strategies mirrors
low-SOC formation in the pioneer stage. Finally, our findings
revealed that two plant and nematode traits, Nleaf and body dia-
meter, serve as key predictors of both microbial traits and SOC
(Fig. S5), highlighting that restoration practitioners in this region
with such highly diverse biodiversity could utilize variations in
plant leaf N concentration and nematode diameter as indicators
to monitor and assess restoration trajectories.

The variations in microbial traits corresponded to a transition
in microbial communities from a fast, metabolically wasteful
strategy in the pioneer stage to a slower, oligotrophic strategy in
the climax stage (Fig. 4). This sheds light on how plant,
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nematode and microbial traits interact to mechanistically influ-
ence SOC during restoration efforts (Fry et al., 2019; Schmitz &
Leroux, 2020). Evidence suggests that microbial traits exhibit
high plasticity in response to plant and nematode attributes
through bottom-up and top-down regulations (Leff et al., 2018;
Thakur & Geisen, 2019; Defrenne et al., 2021; Spitzer
et al., 2021; Wang et al., 2022; Jiang et al., 2023). First, slow
plants prioritize C allocation toward dense structures, producing
recalcitrant litter such as lignin, which enhances microbial bio-
mass retention (De Deyn et al., 2008). Second, plant diversity
and biomass peak at the climax stage boost plant-derived C input
into the soil, improving microbial C use efficiency and biomass
(Duan et al., 2023), thereby contributing to SOC dynamics
(Manzoni et al., 2012; Guo et al., 2021; Xiao et al., 2024). Third,
larger nematodes with high SNB released excess nutrients, such
as mineral N, influencing microbial resource acquisition strate-
gies and regulating microbial communities to preserve more C
substrate within their biomass (Jiang et al., 2017; Zhu
et al., 2018; S. Wang et al., 2021). Overall, our findings suggest
that the coordination of plant and nematode traits, as

demonstrated in our SEM (Fig. 7), can meaningfully associate
with microbial traits and SOC dynamics as natural restoration
progresses. Further research deserves attention to a broader col-
lection of microbial traits, such as maximum growth rate, gen-
ome size and C and N stable isotope, which are tightly linked to
plant and nematode resource-use strategies (Ruess & Chamber-
lain, 2010; Westoby et al., 2021; Yang, 2021), to better under-
stand the trophic interactions across taxa and how these
interactions cascade to ecosystem C cycling, complementing
insights gleaned from plant- and nematode-centric trait-based
research.

Implications for trait-informed restoration

Traditional restoration projects often consider aboveground and
belowground components of ecosystems in isolation (Crouzeilles
et al., 2016; Guan et al., 2018; Wang et al., 2022). However,
there is increasing recognition of the primary role played by
aboveground–belowground linkages in controlling ecosystem
functioning (Bardgett & Wardle, 2010; Kardol & Wardle, 2010;
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van der Putten et al., 2016). In the current context of highly
diverse forests facing intense anthropogenic disturbance, our
study highlights that the interplay between the aboveground and
belowground organisms could help to establish a trait-based cri-
terion for assessing restoration trajectories based on the fast–slow
strategies and their trait proxies of plants and nematodes. Nota-
bly, plant-nematode coordination closer to the slow end of the
fast–slow spectrum signifies better restoration performance that
has the capability to retain more C and mitigate climate change.
These insights offer valuable information for restoration practi-
tioners, enabling them to monitor whether restoration trajectories
are progressing in the right direction. Subsequently, they can
make trait-informed choices in forest management, tailored to
effectively address local needs. However, caution must be exer-
cised when generalizing the results of our case study. The mount-
ing evidence of a multidimensional root trait space influenced by
multiple environmental constraints (Weemstra et al., 2016) was
first empirically demonstrated by Kramer-Walter et al. (2016).
Subsequent studies have further confirmed another dimension
of root traits (Bergmann et al., 2020; Carmona et al., 2021; Wei-
gelt et al., 2021; Klime�sov�a & Herben, 2023). Similarly, nema-
todes are subjected to multiple constraints in the soil
(Yeates, 2003), implying the existence of additional dimensions

within nematode ecological strategies, thus suggesting a multidi-
mensional plant-nematode trait framework. Therefore, we
encourage future studies to thoroughly embrace a multidimen-
sional aboveground–belowground framework that integrates
other soil organisms for a more nuanced evaluation of restoration
trajectories. This could be achieved by actively incorporating lar-
ger sample sizes across multiple sites and climatic conditions, cov-
ering various trait variations, temporal and spatial scales, and
ecosystem types.

Conclusion

Our results establish an empirical coordination between the eco-
logical strategies of plants and nematodes by connecting different
puzzle pieces of plant and nematode traits. The analyses further
revealed that plant and nematode traits jointly explain more of
the variation in SOC dynamics than the traits of either of the two
groups alone. The integrated fast–slow trait spectrum plays a cru-
cial role in predicting C cycling by regulating microbial traits,
highlighting the significance of functional linkages between
aboveground and belowground communities as a monitoring
tool for providing trait-informed predictions of restoration trajec-
tories and enhancing our understanding of incorporating
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belowground traits into biogeochemical cycle models. Moreover,
the current study provides insights into integrating the traits and
ecological strategies of plants and soil organisms to develop NbS
that could aid in meeting the global targets of the United Nations
Decade on ecosystem restoration (2021–2030).
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Fig. S1 Schematic illustration to demonstrate the four restoration
stages and their dependencies in this study.

Fig. S2 Principal components analyses (PCA) of individual-level
plant traits (a) and nematode traits (b) across the pioneer, early,
mid, and climax stages of restoration.

Fig. S3 Community-level plant traits (a) and nematode traits (b)
across the pioneer, early, mid, and climax stages of restoration.

Fig. S4 The heatmap shows relationships between plant traits,
nematode traits, microbial traits, and soil organic carbon.

Fig. S5 Variable importance ranking of plant and nematode
traits in the random forest model predicting microbial C use effi-
ciency (CUE, a), microbial biomass (b), and soil organic carbon
(SOC, c).
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meter at breast height (DBH) across the pioneer, early, mid, and
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